Bentonite clay is proposed as buffer material around the waste canisters and as tunnel backfill material in several concepts for disposal of radioactive waste. The distribution of charge compensating cations in the bentonite is of interest for several reasons, one being possible release of colloid particles from the bentonite to groundwater with very low ionic strength. The cation distribution at equilibrium may be calculated for various relevant groundwater compositions by use of selectivity coefficients. However, present literature data generally concerns coefficients measured in batch experiments with high water-to-solid ratios. The basic aim with the present work was therefore to determine selectivity coefficients for sodium/calcium exchange in bentonite with low water-to-solid ratios, and thereby give a reliable base for calculating the cation distribution in a confined bentonite buffer with a relatively high density. In total, six tests with homo-ionic Na- and Ca-montmorillonite, prepared to three material densities, were equilibrated with test solutions of successively increasing concentration. The distribution of cations at equilibrium was measured by use of ion selective electrodes and ICP/AES, and selectivity coefficients were calculated according to the Gaines–Thomas convention. The obtained selectivity coefficient was found to be in the range of 3.8–7.8, which is similar to those previously reported for high water-to-solid ratios.