Mercury cycling in coastal metropolitan areas on the west coast of India becomes complex due to the combined effects of both intensive domestic anthropogenic emissions and marine air masses. The present study is based on yearlong data of continuous measurements of gaseous elemental mercury (GEM) concentration concurrent with meteorological parameters and some air pollutants at a coastal urban site in Mumbai, on the west coast of India, for the first time. The concentration of GEM was found in a range between 2.2 and 12.3ng/m3, with a mean of 3.1 ± 1.1ng/m3, which was significantly higher than the continental background values in the Northern Hemisphere (~ 1.5ng/m3). Unlike particulates, GEM starts increasing post-winter to peak during the monsoon and decrease towards winter. July had the highest concentration of GEM followed by October, and a minimum in January. GEM exhibited a distinct diurnal cycle, mainly with a broad peak in the early morning, a narrow one by nightfall, and a minimum in the afternoon. The peaks and their timing suggest the origin of urban mobility and the start of local activities. A positive correlation between SO2, PM2.5, temperature, relative humidity, and GEM indicates that emissions from local industrial plants in the Mumbai coastal area. Principal component analysis (PCA) and cluster analysis (CA) confirm this fact. Monthly back trajectory analysis showed that air mass flows are predominantly from the Arabian Sea and local human activities. Assessment of human health risks by USEPA model reveals that the hazardous quotient, HQ < 1, implies negligible carcinogenic risk. GEM observations in Mumbai during the study period are below the World Health Organization's (WHO) safe limit (200ng/m3) for long-term inhalation.
Read full abstract