BackgroundEmerging evidence suggests that specific (poly)phenols may constitute new preventative strategies to counteract cell oxidative stress and myocardial tissue inflammation, which have a key role in the patho-physiology of diabetic cardiomyopathy. In a rat model of early diabetes, we evaluated whether in vivo administration of urolithin A (UA) or urolithin B (UB), the main gut microbiota phenolic metabolites of ellagitannin-rich foods, can reduce diabetes-induced microenvironmental changes in myocardial tissue, preventing cardiac functional impairment.MethodsAdult Wistar rats with streptozotocin-induced type-1 diabetes (n = 29) were studied in comparison with 10 control animals. Diabetic rats were either untreated (n = 9) or subjected to daily i.p. injection of UA (n = 10) or UB (n = 10). After 3 weeks of hyperglycaemia, hemodynamics, cardiomyocyte contractile properties and calcium transients were measured to assess cardiac performance. The myocardial expression of the pro-inflammatory cytokine fractalkine and proteins involved in calcium dynamics (sarcoplasmic reticulum calcium ATPase, phospholamban and phosphorylated phospholamban) were evaluated by immunoblotting. Plasma, urine and tissue distribution of UA, UB and their phase II metabolites were determined.ResultsIn vivo urolithin treatment reduced by approximately 30% the myocardial expression of the pro-inflammatory cytokine fractalkine, preventing the early inflammatory response of cardiac cells to hyperglycaemia. The improvement in myocardial microenvironment had a functional counterpart, as documented by the increase in the maximal rate of ventricular pressure rise compared to diabetic group (+18% and +31% in UA and UB treated rats, respectively), and the parallel reduction in the isovolumic contraction time (−12%). In line with hemodynamic data, both urolithins induced a recovery of cardiomyocyte contractility and calcium dynamics, leading to a higher re-lengthening rate (+21%, on average), lower re-lengthening times (−56%), and a more efficient cytosolic calcium clearing (−32% in tau values). UB treatment also increased the velocity of shortening (+27%). Urolithin metabolites accumulated in the myocardium, with a higher concentration of UB and UB-sulphate, potentially explaining the slightly higher efficacy of UB administration.ConclusionsIn vivo urolithin administration may be able to prevent the initial inflammatory response of myocardial tissue to hyperglycaemia and the negative impact of the altered diabetic milieu on cardiac performance.