Phthalates have been extensively detected in environmental and biological matrices. Exposure to phthalates is implicated in various human diseases. In this study, we conducted a cross-sectional study to determine whether urinary phthalate metabolite concentrations were correlated with prevalence of sarcopenia in US adult population. We included 3562 participants with detailed information on skeletal muscle mass and urinary phthalate metabolites based on National Health and Nutrition Examination Survey (NHANES) 1999-2006 data. A total of 7 main phthalate metabolites were analyzed in the urine sample of each participant. Appendicular skeletal muscle mass (ASM) was measured using dual-energy X-ray absorptiometry. Multivariable linear regression models were conducted following adjustment for multiple covariates. ASM adjusted by body mass index (ASM/BMI) was calculated, and sarcopenia was defined as the lowest quintile for ASM/BMI value. Compared with participants in quartile 1, those in quartile 2 of urinary mono-n-butyl phthalate (MnBP) and quartile 4 of urinary monobenzyl phthalate (MBzP) had decreased ASM/BMI. Urinary MnBP in quartile 4, as well as urinary MBzP in quartile 2, was shown to be significantly correlated with higher sarcopenia prevalence. In subgroup analysis, negative association of MBzP with ASM/BMI was observed in both males and females, while this negative association was only observed in males for MnBP. Females with higher urinary monoethyl phthalate (MEP) concentrations had higher sarcopenia risk. Taken together, the present study found several urinary phthalate metabolites were positively associated with sarcopenia prevalence in US adult population. These findings indicated phthalate exposure might be an important environmental risk factor contributing to sarcopenia development.
Read full abstract