The role of asymmetric dimethylarginine (ADMA) in chronic kidney disease (CKD) is unclear. Through inhibition of type I protein arginine methyltransferases (PRMTs), a novel strategy, we aimed to determine the effect of ADMA on renal fibrosis and explore its underlying working mechanisms. After sham or unilateral ureter ligation (UUO) operation, 20-25 g male c57 mice were treated with vehicle or PT1001B, an inhibitor of type I PRMTs, for 13 d. Moreover, human kidney 2 (HK2) and normal rat kidney 49F (NRK-49F) cells were treated with various concentrations of PT1001B or ADMA in the presence of 2.5 ng/ml TGF-β. We found that treatment with PT1001B increased the deposition of extracellular matrix proteins, the expression of α smooth muscle actin, and connective tissue growth factor in UUO-induced fibrotic kidneys, which is correlated with reduced expression of PRMT1, reduced the production of ADMA, and increased expression of uromodulin. In TGF-β-stimulated HK2 and NRK-49F cells, PT1001B dose-dependently inhibited ADMA production, increased NO concentrations, and enhanced the expression of profibrotic proteins. Exogenous addition of ADMA inhibited the expression of profibrotic proteins dose-dependently and attenuated the profibrotic effect of PT1001B. Moreover, ADMA reduced the NO concentration in PT1001B-treated HK2 cells. Finally, we conclude that ADMA has an antifibrotic effect in obstructed kidneys, and future application of type I PRMT inhibitor should be done cautiously for patients with CKD.-Wu, M., Lin, P., Li, L., Chen, D., Yang, X., Xu, L., Zhou, B., Wang, C., Zhang, Y., Luo, C., Ye, C. Reduced asymmetric dimethylarginine accumulation through inhibition of the type I protein arginine methyltransferases promotes renal fibrosis in obstructed kidneys.
Read full abstract