The urease of Helicobacter pylori is an important antigen and appears critical for colonization and virulence. Several studies have indicated a superficial localization for the H. pylori urease, and the purpose of this study was to determine the effects of cations on the release and stability of urease activity from H. pylori cells. Incubation of partially purified H. pylori urease in water containing 1, 5, or 10 mM Ca2+, Mg2+, K+, Na+, EDTA, or EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] had little effect on activity. In contrast, 1 mM Fe3+, Cu2+, Co2+, or Zn2+ substantially (> 80%) inhibited activity, and 10 mM Fe2+, Mn2+, and Ni2+ inhibited about 30% of the activity. Addition of Ca2+ or Mg2+ markedly decreased extraction of urease from intact H. pylori cells by water, but 1 mM Na+, K+, EGTA, or EDTA each had minimal effects on release, suggesting that divalent cations have a role in attachment of urease to H. pylori cells. The stability of enzymatic activity at 4 degrees C was enhanced by addition of glycerol or 2-mercaptoethanol; however, even after loss of activity, full antigenicity for human serum was retained.