Inclusion of urea in dairy cattle diets is often limited by negative effects of high levels of feed urea on dry matter intake (DMI) and efficiency of rumen N utilization. We hypothesized that supplying urea postruminally would mitigate these limitations and allow greater inclusion of urea in dairy cattle diets. Four rumen-fistulated Holstein-Friesian dairy cows (7 ± 2.1 lactations, 110 ± 30.8 d in milk; mean ± standard deviation) were randomly assigned to a 4 × 4 Latin square design to examine DMI, milk production and composition, digestibility, rumen fermentation, N balance, and plasma constituents in response to 4 levels of urea continuously infused into the abomasum (0, 163, 325, and 488 g/d). Urea doses were targeted to linearly increase the crude protein (CP) content of total DMI (diet plus infusion) by 0%, 2%, 4%, and 6% and equated to 0%, 0.7%, 1.4%, and 2.1% of expected DMI, respectively. Each 28-d infusion period consisted of a 7-d dose step-up period, 14 d of adaptation, and a 7-d measurement period. The diet was fed ad libitum as a total mixed ration [10.9% CP, 42.5% corn silage, 3.5% grass hay, 3.5% wheat straw, and 50.5% concentrate (dry matter basis)] and was formulated to meet 100%, 82%, and 53% of net energy, metabolizable protein, and rumen-degradable protein requirements, respectively. Linear, quadratic, and cubic effects of urea dose were assessed using polynomial regression assuming the fixed effect of treatment and random effects of period and cow. Dry matter intake and energy-corrected milk yield responded quadratically to urea dose, and milk urea content increased linearly with increasing urea dose. Apparent total-tract digestibility of CP increased linearly with increasing urea dose and ruminal NH3-N concentration responded quadratically to urea dose. Mean total VFA concentration was not affected by urea dose. The proportion of N intake excreted in feces decreased linearly and that excreted in urine increased linearly in response to increasing urea dose. The proportion of N intake excreted in milk increased linearly with increasing urea dose. Urinary urea excretion increased linearly with increasing urea dose. Microbial N flow responded cubically to urea dose, but the efficiency of microbial protein synthesis was not affected. Plasma urea concentration increased linearly with increasing urea dose. Regression analysis estimated that when supplemented on top of a low-CP diet, 179 g/d of postruminal urea would maximize DMI at 23.4 kg/d, corresponding to a dietary urea inclusion level of 0.8% of DMI, which is in line with the current recommendations for urea inclusion in dairy cattle diets. Overall, these results indicate that postruminal delivery of urea does not mitigate DMI depression as urea dose increases.
Read full abstract