A novel biobased polyurethane with robust mechanical properties, repairability, reprocessability, and shape memory enabled by dynamic hindered urea bonds is reported. • Novel biobased polyurethanes bearing hindered urea bonds were synthesized. • The polymers possess self-healing, shape memory, and reprocessable properties. • Reversible solid/liquid transformation occurred under cooling and heating treatment. • The polymers can be used as recoverable adhesives and conductive composites. Developing biobased polyurethanes with repairability, reprocessability as well as robust mechanical properties remains a great challenge. Herein, novel, robust biobased polyurethane materials bearing hindered urea bonds (HUBs) derived from renewable castor oil are reported. The dynamic HUBs and hydrogen bonds that existed in HUBs provided these materials extremely low relaxation times (12.3 to 221 s at 100 °C) as well as excellent scratch healing efficiency (88.9–100% at 100 °C for 10 min) and recyclability (without obviously sacrificing the tensile properties at least 4 times). The selected sample also exhibited good shape memory behavior, with a shape fixity ratio above 88.4% and a shape recovery ratio above 81.3%. Remarkably, the polymers could undergo a rapid and reversible solid/liquid transformation under cooling and heating treatment. Besides, these HUBs materials demonstrated high adhesion strength (up to 2.53 MPa) when bonding stainless steel, and can be re-used for at least 5 times without significant deterioration in adhesion strength. Finally, by mixing a certain amount of carbon nanotubes (CNTs) and adjusting the compositions of HUBs, recyclable and malleable conductive composites were achieved. In general, this work presents a green, simple, and universal approach to fabricate robust, sustainable polyurethanes with multiple functions like repairability, shape memory, malleability, and recyclability.
Read full abstract