The use of roundabouts improves intersection safety by eliminating or altering conflict types, reducing crash severity, and causing drivers to reduce speeds. However, roundabout performances can degrade if precautions are not taken during either the design or the operation phase. Therefore, additional information on the safety of the roundabouts is extremely helpful for planners and designers in identifying existing deficiencies and in refining the design criteria currently being used. The aim of the paper was to investigate the crash contributory factors in 15 urban roundabouts located in Italy and to study the interdependences between these factors. The crash data refer to the period 2003–2008. The identification of the crash contributory factors was based on site inspections and rigorous analyses performed by a team of specialists with a relevant road safety engineering background. Each roundabout was inspected once every year from 2004 to 2009, both in daytime and in nighttime. Overall, 62 different contributory factors and 2156 total contributory factors were identified. In 51 crashes, a single contributory factor was found, whereas in the other 223 crashes, a combination of contributory factors was identified. Given the large amount of data, the interdependences between the contributory factors and between the contributory factors and the different crash types were explored by an association discovery. Association discovery is the identification of sets of items (i.e., crash contributory factors and crash types in our study) that occur together in a given event (i.e., a crash in our study). The rules were filtered by support, confidence, and lift. As a result, 112 association rules were discovered. Overall, numerous contributory factors related to the road and environment deficiencies but not related to the road user or to the vehicle were identified. The most important factors related to geometric design were the radius of deflection and the deviation angle. In existing roundabouts, the improvement of these factors might be quite expensive, but the crucial role of a moderate radius of deflection and a large deviation angle in the design of new roundabouts was stressed. Many of the contributory factors were related to markings and signs, and these factors could be easily removed with low-cost safety measures. Furthermore, because of the association between the markings, signs, and geometric design contributory factors, the study results suggest that the improvement in markings and signs might also have a significant effect in the sites where geometric design deficiencies were identified as contributory factors.