Effective forecasting and response to meteorological hazards are crucial for safeguarding life, property, and supporting sustainable socioeconomic development. With the rising frequency and severity of meteorological hazards worldwide, this study proposes an enhanced risk assessment framework for urban infrastructure exposed to extreme weather events, with a focus on cascading impacts to critical services such as electricity, communication, and transportation networks (roads and subways). A disaster-loss model is developed to quantify infrastructure vulnerability at various spatial and temporal scales under heavy rainfall conditions, accounting for secondary effects. The model's performance is validated through empirical analysis of a 15-year rainfall event in Dongguan City, China, occurring from September 7–8, 2023. Results indicate the model's ability to predict real-event outcomes with approximately 70% accuracy. This model offers valuable insights for disaster prevention and mitigation strategies, aiding decision-makers in optimizing emergency resource allocation, enhancing disaster response efficiency, and issuing timely public risk warnings to minimize losses.
Read full abstract