To effectively prevent and control pollution from heavy metals (HMs) in urban soils, it is essential to thoroughly understand the contamination status of contaminated sites. In this study, the contamination status and sources of six HMs (As, Cu, Cr, Ni, Pb, Cd) in the soil of a decommissioned chemical plant in southern China were comprehensively analyzed. The results indicated that the average concentration of HMs followed the sequence: Cr > Pb > Cu > Ni > As > Cd. Heavy metal accumulation in the upper soil layer was predominantly observed in industrial zones and low-lying areas, with notable variations in concentration along the vertical profile. Certain sections of the site exhibited severe HM contamination, particularly with Cu levels exceeding the background value by 46.77times. Cd presented significant ecological risks in specific areas, with an average Ecological Index of 96.09. Carcinogenic and non-carcinogenic risks were identified at three and six sampling points, respectively, with sampling point S103 demonstrating both types of risks. The causes of HM contamination were primarily attributed to anthropogenic activities. Horizontal dispersion was mainly influenced by production operations and topographical features, while vertical distribution was predominantly affected by the permeability characteristics of the strata. The causality analysis incorporating production activities and topographical factors provides novel perspectives for understanding sources of contamination at contaminated sites. The study outcomes can offer guidance for the assessment and surveying of urban industrial pollution sites.
Read full abstract