Urban flood risk assessment delivers invaluable information regarding flood management as well as preventing the associated risks in urban areas. The present study prepares a flood risk map and evaluate the practices of low-impact development (LID) intended to decrease the flood risk in Shiraz Municipal District 4, Fars province, Iran. So, this study investigate flood vulnerability using MCDM models and some indices, including population density, building age, socio-economic conditions, floor area ratio, literacy, the elderly population, and the number of building floors to. Then, the map of thematic layers affecting the urban flood hazard, including annual mean rainfall, land use, elevation, slope percentage, curve number, distance from channel, depth of groundwater, and channel density, was prepared in GIS. After conducting a multicollinearity test, data mining models were used to create the urban flood hazard map, and the urban flood risk map was produced using ArcGIS 10.8. The evaluation of vulnerability models was shown through the use of Boolean logic that TOPSIS and VIKOR models were effective in identifying urban flooding vulnerable areas. Data mining models were also evaluated using ROC and precision-recall curves, indicating the accuracy of the RF model. The importance of input variables was measured using Shapley value, which showed that curve number, land use, and elevation were more important in flood hazard modeling. According to the results, 37.8 percent of the area falls into high and very high categories in terms of flooding risk. The study used a stormwater management model (SWMM) to simulate node flooding and provide management scenarios for rainfall events with a return period ranging from 2 to 50 years and five rainstorm events. The use of LID practices in flood management was found to be effective for rainfall events with a return period of less than 10 years, particularly for two-year events. However, the effectiveness of LID practices decreases with an increase in the return period. By applying a combined approach to a region covering approximately 10 percent of the total area of Shiraz Municipal District 4, a reduction of 2–22.8 percent in node flooding was achieved. The analysis of data mining and MCDM models with a physical model revealed that more than 60% of flooded nodes were classified as "high" and "very high" risk categories in the RF-VIKOR and RF-TOPSIS risk models.