Uranium ore from Narwapahar Mines, UCIL contains 0·047% U3O8 with some refractory minerals and high apatite (5%) results in a maximum 78% recovery through conventional processing at UCIL, with a fairly high consumption of sulphuric acid and pyrolusite, and loss of uranium as uranium phosphate. To avoid usage of non-ecofriendly oxidants, obviate the influence of phosphate and improve the overall process output of uranium, an alternate extraction technology using microbial isolate(s) is elucidated in this study. A. ferrooxidans isolated from Narwapahar mine water was used in bioleaching of uranium from this apatite rich low grade uraninite ore. Optimum uranium biorecovery of 96% is achieved at 10% pulp density (w/v), pH 1·7 and 35°C in 40 days with the fine particles of <45 μm size. Under the optimum condition at pH 1·7, rise in redox potential is recorded to be 594–708 mV in 40 days. Bioleaching of uranium seems to follow the indirect mechanism of leaching with the involvement of Fe(III) biogenically generated by Acidithiobacillus ferrooxidans (A. ferrooxidans). Uranium recovery was also examined using another mesophilic isolate of Leptospirillum ferrooxidans (L. ferrooxidans) which showed 98% uranium leaching at 40°C, which shows the possibility of improving the kinetics of the process. The high R2 values in the temperature range (298–308 K) indicated uranium dissolution by the chemical reaction occurring at the ore surface with Fe(III) generated biogenically, with Ea value of 28·3 kJ mol−1. The mechanism of uranium bioleaching is also elucidated with X-ray diffraction phase identification of the leach residues with time, followed by observing the surface morphology through SEM at varying temperatures.Le minerai d’uranium des Mines de Narwapahar, d’UCIL, contient 0·047% d’U3O8 avec quelques minéraux réfractaires et une teneur élevée en apatite (5%). On note une récupération maximale de 78% par traitement conventionnel à UCIL, avec une consommation relativement élevée d’acide sulfurique et de pyrolusite, ainsi qu’une perte d’uranium sous forme de phosphate d’uranium. Afin d’éviter l’utilisation d’agents oxydants non écologiques, de prévenir l’influence du phosphate, et d’améliorer la production globale d’uranium du procédé, dans cette étude on examine une autre technologie d’extraction utilisant un (des) isolat(s) microbien(s). On a utilisé A. ferrooxidans, isolée de l’eau de mine de Narwapahar, pour la biolixiviation de l’uranium de ce minerai pauvre en uraninite et riche en apatite. La bio récupération optimale de l’uranium de 96% est obtenue à 10% PD (poids/volume) au pH de 1·7 et à 35°C en 40 jours avec les particules fines d’une taille <45 μm. Sous la condition optimale d’un pH de 1·7, on a enregistré l’augmentation du potentiel rédox à 594–708 mV en 40 jours. La biolixiviation de l’uranium semble suivre le mécanisme indirect de lixiviation avec l’implication de Fe(III) engendré bio génétiquement par A. ferrooxidans. On a également examiné la récupération de l’uranium en utilisant un autre isolat mésophile de L. ferrooxidans, qui a montré une lixiviation de 98% de l’uranium à 40°C, ce qui montre la possibilité d’améliorer la cinétique du procédé. Les valeurs élevées de R2 dans la gamme de température (298–308 K) indiquaient que la dissolution de l’uranium par réaction chimique se produisait à la surface du minerai avec Fe(III) engendré bio génétiquement, à une valeur de Ea de 28·3 kJ mol−1. Le mécanisme de biolixiviation de l’uranium est également examiné avec l’identification de phase par XRD des résidus de lixiviat en fonction du temps, suivi par l’observation de la morphologie de la surface au moyen du SEM, à des températures variées.
Read full abstract