The Ochre-Umm Greifat area is one of the Red Sea areas with high concentrations of iron and zinc, which is formed from hydrothermal solutions as a result of the structural activity that occurred in the Red Sea Zone during the Pleistocene period. These deposits are also accompanied by deposits of low- to high uranium grade. In addition to Zn, Pb, and Cu anomalies, particularly in fault zones and their branches affecting the study area, although there are numerous zinc minerals in the Ocher-Greifat area, uranium minerals are scarce, with only one mineral, compreignacite, being recorded and the majority of the uranium being present as an adsorbed element on iron and/or clay stones. In addition, uranothorite is extremely rare and occurs as fine grains embedded in rocks. A technological sample was taken from an iron-rich clay area in a fault zone and was found to assay 700-ppm uranium. The leachability of uranium from the used sample was investigated using an alkaline solution based on the chemical and mineralogical composition of the used sample. The selected ore is treated with Na2CO3 and NaHCO3 in the presence of H2O2 as oxidant. Many digestion factors are studied and optimized. Under the optimum leaching conditions, the uranium dissolution efficiency is around 84%. For the uranium separation, the pH of the leach liquor is adjusted at 10, then subjected to a solvent extraction step using 4% Aliquat®336/kerosene in the presence of isodecanol as third-phase prevention. The loaded organic solvent was then treated with NaOH/H2O2 solution as a stripping solution. Finally, the resultant solution is subjected to a precipitation step using ammonia solution.
Read full abstract