Urease-producing bacteria (UPB) are widely present in soil and play an important role in soil ecosystems. In this study, 65 UPB strains were isolated from cadmium (Cd)-polluted soil around a lead-zinc mine in Yunnan Province, China. The Cd tolerance, removal of Cd from aqueous solution, production of indoleacetic acid (IAA) and plant growth-promoting effects of these materials were investigated. The results indicate that among the 65 UPB strains, four strains with IAA-producing ability were screened and identified as Bacillus thuringiensis W6-11, B. cereus C7-4, Serratia marcescens W11-10, and S. marcescens C5-6. Among the four strains, B. cereus C7-4 had the highest Cd tolerance, median effect concentration (EC50) of 59.94 mg/L. Under Cd 5 mg/L, S. marcescens C5-6 had the highest Cd removal from aqueous solution, up to 69.83%. Under Cd 25 mg/kg, inoculation with B. cereus C7-4 significantly promoted maize growth in a sand pot by increasing the root volume, root surface area, and number of root branches by 22%, 29%, and 20%, respectively, and plant height and biomass by 16% and 36%, respectively, and significantly increasing Cd uptake in the maize roots. Therefore, UPB is a potential resource for enhancing plant adaptability to Cd stress in plants with Cd-polluted habitats.
Read full abstract