The urokinase plasminogen activator receptor (uPAR) is a promising biomarker for cancer diagnosis and therapy. We herein fabricated a new type of uPAR-targeted imaging probe Al18F-NOTA-VC and preliminarily evaluated its potential application in PET imaging of the glioma model in vivo. Peptide VC was synthesized and identified by MALDI-TOF-MS. The IC50 between VC/precursor NOTA-VC and uPAR was then determined before the synthesis and purification of Al18F-NOTA-VC, followed by further studies of in-vitro properties of Al18F-NOTA-VC. Meanwhile, the AE105-based probe followed a similar procedure in-vitro test. Finally, the PET imaging properties, including uPAR-targeting ability and the metabolism of Al18F-NOTA-VC, were investigated. The VC and NOTA-VC were obtained successfully and demonstrated a good affinity with uPAR. Followed by Al18F labeling successfully, excellent properties, including the serum stability, water solubility, and specificity of Al18F-NOTA-VC, were obtained in-vitro test compared with AE105 based probe. An excellent tumor uptake and renal excretion data of Al18F-NOTA-VC were acquired from in-vivo U87MG tumor model PET imaging, consistent with the subsequent biodistribution study. In addition to the excellent specificity and high tumor/normal tissue contrast for uPAR-targeted PET imaging of U87MG tumor, Al18F-NOTA-VC possessed promising clearance ability by renal system route. These excellent properties facilitated Al18F-NOTA-VC to be a promising imaging agent for uPAR high-expressing tumors and, thus, provided a paradigm for developing peptide-based probes for uPAR-associated disease diagnosis.