The relative slow carbonation efficiency for conventional wet and dry carbonation of recycled concrete fines (RCF) limits its resource industrial utilization. In this study, an innovative mechanochemical carbonation (MC) method was developed. The carbonation kinetics, phase assemblage and microstructure evolution of RCF during the MC process were extensively examined. The results exhibited a substantial enhancement in the carbonation efficiency and CO2 utilization rate, as evidenced by achieving a notable carbonation degree within 10 min. This accomplishment surpassed what could be achieved even after a prolonged 2 h period of wet carbonation, and the CO2 uptake capacity and utilization rate achieved via MC reached >0.3 g-CO2/g-RCF and 80 %, respectively. The superior performance of MC was ascribed to the influence of mechanochemical effects. These effects contributed to the refinement in the geometrical characteristics of RCF, exfoliation of the passivating layers, and facilitation of CO2 dissolution, which favored the structural disintegration of RCF and carbonation progress. Another distinctive aspect of MC treatment was the production of a greater proportion of metastable CC characterized by reduced crystalline size, which was attributed to modifications in the carbonation environment and the structural alterations induced by mechanochemical effects. Moreover, the precipitation of silica gels commenced at approximately 4 min in the MC process, a notably earlier onset when compared with wet carbonation; additionally, a greater abundance of silica gels was observed in the current MC procedure, resulting from the higher carbonation degree caused by mechanochemical effects. The encouraging conclusions in the present work validated the feasibility of producing carbonated RCF more efficiently and paved the way for future industrial practice.
Read full abstract