A novel CeF3:Tm3+, Er3+ NIR up-down conversion luminescent nanoparticles with highly efficient visible and near-infrared second window (NIR-II) emission were synthesized by direct precipitation and hydrothermal methods. The two different emission modes of visible-NIR II light of Er3+were realized through the energy transfer of Tm3+ and Ce3+at the excitation wavelength of 808 nm. Which successfully combined the narrow emission peaks of visible light and the deep tissue penetration advantage of NIR-II. First, the effects of preparation conditions on the structure, morphology, stability and luminescence properties of CeF3:Tm3+, Er3+ nanoparticles were analyzed by XRD, SEM, TEM and PL. The results showed that the crystallinity, morphology and luminescence intensity of CeF3:Tm3+,Er3+ nanoparticles produced by hydrothermal method (reaction time of 10 h) were optimal compared with that of direct precipitation method. CeF3: Tm3+,Er3+ nanoparticles has better thermal stability, and fluorescence lifetime of 5D0→7F2 (525 nm), 4I15/2→4I11/2 (1066 nm) and 4I15/2→4I13/2 (1386 nm) for Er3+ are 15.51 ns, 48.78 us and 57.06 us, separately. At the same time, the surface of CeF3:Tm3+, Er3+ nanoparticles was modified by PEG and Lys. And then the effects of the surface modification on the hydration size, zeta potential and up-down conversion luminescent properties (visible and NIR-II light emission) were investigated. The results show that the modification of PEG effectively slows down the agglomeration of CeF3:Tm3+, Er3+ nanoparticles and improves their stability and dispersion under the same conditions. More importantly, the modification of PEG effectively increases the up-conversion luminescence intensity of CeF3:Tm3+, Er3+ nanoparticles under 808 nm excitation. Moreover, the CeF3:Tm3+, Er3+-PEG nanoparticles with 20–40 nm showed stronger NIR up-down conversion emission intensity in aqueous solutions (pH = 5,6,7) and better thermal stability. Furthermore, the CeF3:Tm3+, Er3+-PEG nanoparticles has low cytotoxicity and good biocompatibility. This study provides a theoretical basis for the development of high-performance rare-earth NIR up-down conversion luminescence materials.