'Surra', an economically important disease of livestock, is caused by the parasitic blood protozoon Trypanosoma evansi. Both innate and adaptive immunity contribute to the protection against this infection. T-helper cells play a crucial role in the antibody-mediated clearance of T. evansi. We present here the data on the kinetics of expression of important Th1, Th2 and Th17 cytokines, vis-a-vis the dynamics of humoral response in bovine calves following immunization with γ-radiation-attenuated live T. evansi and later challenged with homologous virulent T. evansi. Significant upregulation of the pro-inflammatory Th1 and Th17 cytokines was correlated with the IgG2-mediated protection in the immunized bovine calves post-challenge. The calves were immunized with 5×106 500Gy γ-radiation-attenuated live T. evansi (horse isolate) thrice at 15days intervals through the subcutaneous route and subsequently, challenged with 1×103 virulent T. evansi on day 50. Significantly high serum IgG (1:1600) and IgM (1:800) titres were recorded on week 2 PC, whereas the peak serum IgG2 titre (1:800) was recorded on week 6 PC. Significant upregulation of IFN-γ, TNF, IL-1β, and IL-2 was recorded between days 1 to 3 PC, while the same for IL-17 was recorded on day 14 PC. The immunized calves were free from parasitemia post-challenge and were clinically healthy till the end of the experiment. Significant upregulation of IL-10 and IL-4 transcripts and a corresponding increase of serum IgG1 titre in the placebo group helped patency of the parasite in an anti-inflammatory environment and clinical exacerbation of the disease. The expression of the important Th1 cytokines was crucial for antibody-mediated short-term protection against a lethal challenge of T. evansi in cattle.
Read full abstract