Without a doubt, atomic force microscopy (AFM) is currently one of the most powerful and useful techniques to assess micro and even nano-cues in the biological field. However, as with any other microscopic approach, methodological challenges can arise. In particular, the characteristics of the sample, sample preparation, type of instrument, and indentation probe can lead to unwanted artifacts. In this protocol, we exemplify these emerging issues on healthy as well as osteoarthritic articular cartilage explants. To this end, we first show via a step-by-step approach how to generate, grade, and visually classify ex vivo articular cartilage discs according to different stages of degeneration by means of large 2D mosaic fluorescence imaging of the whole tissue explants. The major strength of the ex vivo model is that it comprises aged, native, human cartilage that allows the investigation of osteoarthritis-related changes from early onset to progression. In addition, common pitfalls in tissue preparation, as well as the actual AFM procedure together with the subsequent data analysis, are also presented. We show how basic but crucial steps such as sample preparation and processing, topographic sample characteristics caused by advanced degeneration, and sample-tip interaction can impact data acquisition. We also subject to scrutiny the most common problems in AFM and describe, where possible, how to overcome them. Knowledge of these limitations is of the utmost importance for correct data acquisition, interpretation, and, ultimately, the embedding of findings into a broad scientific context.