Context modulates how information is processed in the mammalian brain. For example, brain responses are amplified to contextually unusual stimuli. This phenomenon, known as "deviance detection,"1,2 is well documented in early, primary sensory cortex, where large responses are generated to simple stimuli that deviate from their context in low-order properties, such as line orientation, size, or pitch.2,3,4,5 However, the extent to which neural deviance detection manifests (1) in broader cortical networks and (2) to simple versus complex stimuli, which deviate only in their higher-order, multisensory properties, is not known. Consistent with a predictive processing framework,6,7 we hypothesized that deviance detection manifests in a hierarchical manner across cortical networks,8,9 emerging later and further downstream when stimulus deviance is complex. To test this, we examined brain responses of awake mice to simple unisensory deviants (e.g., visual line gratings, deviating from context in their orientation alone) versus complex multisensory deviants (i.e., audiovisual pairs, deviating from context only in their audiovisual pairing but not visual or auditory content alone). We find that mouse parietal associative area-a higher cortical region-displays robust multisensory deviance detection. In contrast, primary visual cortex exhibits strong unisensory visual deviance detection but weaker multisensory deviance detection. These results suggest that deviance detection signals in the cortex may be conceptualized as "prediction errors," which are primarily fed forward-or downstream-in cortical networks.6,7.