ABSTRACTSediment from the Serbian Great Bačka Canal (GBC), which has long been classified as toxic waste due to high pollutant concentrations, exemplifies the sediment management challenges in Europe, where regulations vary by country. Serbian legislation primarily focuses on total metal concentrations relative to prescribed limits. Our study addresses this limitation by using an integrated approach to assess sediment pollution's detrimental effects at the ecosystem level. This approach is particularly relevant for the GBC, an environmental hotspot historically impacted by severe pollution from untreated industrial wastewater and population growth. Although previous research on the GBC has predominantly focused on chemical analyses, often overlooking broader environmental and health impacts, our study aims to evaluate whether ecotoxicological tests provide a more comprehensive assessment of sediment quality compared to traditional methods. Although only copper concentrations surpassed national limits, multiple metals and polycyclic aromatic hydrocarbons (PAHs) exceeded international sediment quality guidelines (SQGs). Sequential extraction revealed that 50% of copper was immobilized in the residual fraction, and ecotoxicological tests with Myriophyllum aquaticum indicated potential toxicity. Human health risk assessments showed a low risk of carcinogenic effects from PAHs, but a higher risk associated with zinc and copper. These findings highlight the urgent need for pollution reduction and ecological restoration in the GBC and similar river systems.
Read full abstract