Lentic small water bodies (LSWBs) deteriorate owing to anthropogenic activities, such as untreated domestic and agricultural waste disposal. Moreover, different turnover mechanisms occur during different seasons, contributing to nutrient enrichment and consequent degradation of LSWBs. However, understanding their spatial, temporal, and vertical variations during different seasons is understudied. In addition, studies on the variation in water quality under varying rainfall and land-use conditions are limited. Therefore, in this study, three LSWBs located in Northern India were studied during the pre-monsoon and monsoon seasons (December 2022 to October 2023). Total nitrogen (TN), chlorophyll-a (Chl-a), total phosphorus (TP), temperature, pH, dissolved oxygen (DO), total dissolved solids (TDS), chemical oxygen demand (COD),secchi disk depth (SDD), and water level (WL) were measured monthly. Sentinel-2 and CHIRPS pentad data were used for land use, land cover classification, and rainfall analysis. The spatial analysis indicates that the seasonal shift affects the water quality distribution, especially near the inlets and at the edges. The overall concentrations of TN and TP decreased during the monsoon season; however, they increased significantly at the inlets of the LSWBs. On the other hand, the Chl-a concentration shifted towards the edges due to the inflow during the monsoon. Temporal analysis also suggests that the arrival of the monsoon lowers pH, DO, and TDS. However, the concentrations of TN and TP increased because of agricultural runoff. Chl-a and COD show distinct variations due to the individual LSWBs' local conditions. Vertical variability analysis demonstrated pH, temperature, and TN stratification during the pre-monsoon period. However, during the monsoon, stratification is less significant due to intermixing. Redundancy analysis (RDA) showed that land use and rainfall patterns affected the water quality of LSWB 1, 2, and 3 by 53.49%, 81.62%, and 92.64%, respectively. This shows that land use, land cover, and rainfall changes affect the water quality of LSWBs. This study highlights the negative impact of runoff from agricultural land use as the main factor responsible for increased nutrient levels in the LSWBs.
Read full abstract