Three-dimensional unsteady numerical simulations were carried out to analyse tip clearance flow in a low-speed isolated axial compressor rotor blades row. A flow solver has been used for the current study utilizing the large eddy simulation (LES) technique. Periodic tip leakage flow and its propagation trajectories were simulated in detail. A number of pseudo pressure transducers were imposed on the pressure side of the blade for detection of unsteady surface pressures to provide a calculation of tip leakage flow frequencies. Two different sizes of tip clearance were considered for simulations and analyses. Non-dimensional frequencies of the tip leakage flow were calculated and final results were compared to those of existing numerical and experimental data. Final results demonstrated that in contrast to the Reynolds averaged Navier–Stokes (RANS) model, the LES method shows considerable dependency of frequency characteristics of the tip leakage flow to the gap size and can detect different frequency spectrums along the blade surface. All the results obtained through the current numerical approach were in close agreement with those of existing experimental data.