Modern data centers suffer from immense power consumption. As a result, data center operators have heavily invested in capacity-scaling solutions, which dynamically deactivate servers if the demand is low and activate them again when the workload increases. We analyze a continuous-time model for capacity scaling, where the goal is to minimize the weighted sum of flow time, switching cost, and power consumption in an online fashion. We propose a novel algorithm, called adaptive balanced capacity scaling (ABCS), that has access to black-box machine learning predictions. ABCS aims to adapt to the predictions and is also robust against unpredictable surges in the workload. In particular, we prove that ABCS is [Formula: see text] competitive if the predictions are accurate, and yet, it has a uniformly bounded competitive ratio even if the predictions are completely inaccurate. Finally, we investigate the performance of this algorithm on a real-world data set and carry out extensive numerical experiments, which positively support the theoretical results. Funding: This work was partially supported by the Division of Computing and Communication Foundations [Grant 2113027]. The authors also acknowledge financial support for this project from the Algorithm and Randomness Center–Transdisciplinary Research Institute for Advancing Data Science Fellowship at Georgia Tech.
Read full abstract