Abstract

Modern data centers suffer from immense power consumption. As a result, data center operators have heavily invested in capacity-scaling solutions, which dynamically deactivate servers if the demand is low and activate them again when the workload increases. We analyze a continuous-time model for capacity scaling, where the goal is to minimize the weighted sum of flow time, switching cost, and power consumption in an online fashion. We propose a novel algorithm, called adaptive balanced capacity scaling (ABCS), that has access to black-box machine learning predictions. ABCS aims to adapt to the predictions and is also robust against unpredictable surges in the workload. In particular, we prove that ABCS is [Formula: see text] competitive if the predictions are accurate, and yet, it has a uniformly bounded competitive ratio even if the predictions are completely inaccurate. Finally, we investigate the performance of this algorithm on a real-world data set and carry out extensive numerical experiments, which positively support the theoretical results. Funding: This work was partially supported by the Division of Computing and Communication Foundations [Grant 2113027]. The authors also acknowledge financial support for this project from the Algorithm and Randomness Center–Transdisciplinary Research Institute for Advancing Data Science Fellowship at Georgia Tech.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call