In this article, a simplified iron/spinel catalyst system was adopted as the Fischer–Tropsch to light olefins (FTO) catalyst to rule out disturbances from efficient promoters (e.g., K or combination of S/Na). Supported by regular supports (e.g., Al2O3, carbon, etc.), unpromoted iron catalysts commonly have a maximum C2=–C4= hydrocarbon distribution below 28%. Supported by a composite oxide support (i.e., nominal composition, ZnAl4O7, calcined at 350 °C), our porous, unpromoted iron catalyst exhibits a maximum C2=–C4= hydrocarbon distribution of 40%, achieving a significant increase by ca. 42% in comparison with regular supports. Appropriate lifting of atomic Zn/Fe ratio, as well as, reducing at lower temperature plus mild carburization, both can make a supported iron catalyst more efficient in hindering C–C coupling and producing light olefins. The structure of ZnAl4O7 support remains stable in iron catalysts during CO hydrogenation.