The solubility and permeability enhancement of curcumin (Cur) is crucial for its manufacture and application in medical field. Herein, Cur amorphous solid dispersions (ASDs) with enhanced drug solubility and permeability was formulated by Eudragit EPO (EuD) and biological macromolecules of hydroxypropyl methylcellulose E50 (HPMC), and significant functions of HPMC for Cur ASDs were mainly studied. The results showed that the mean particle size of Cur decreased from more than 300 nm to less than 200 nm with the addition of HPMC in excipient aqueous solution evidenced by dynamic light scattering result, confirming that HPMC had the ability to inhibit crystallization by lowering drug-rich droplets in the initial mixing process. Innovatively for molecular dynamic modeling study, crystalline Cur molecules in EuD medium trended to aggregate while not for EuD/HPMC 1:1 and EuD/HPMC 3:1 medium. HPMC functioned as surfactant converted the arrangement of phospholipid bilayers to un-ordered, and un-ordered state of phospholipids lead to the enhancement of Cur transmembrane using HPMC as auxiliary excipient. Cur-EuD/HPMC 3:1 contributed greatly to the Cur permeability, leading to obtain superior relative oral bioavailability and anti-inflammatory effect. Cur ASDs with proper amount of HPMC can be rendered as outstanding therapeutic strategy for medical application.
Read full abstract