This paper proposes the design and development of an on-board autonomous visual tracking system (AVTS) for unmanned aerial vehicles (UAV). A prototype of the proposed system has been implemented in MATLAB/ Simulink for simulation purposes. The proposed system contains GPS/INS sensors, a gimbaled camera, a multi-level autonomous visual tracking algorithm, a ground stationary target (GST) or ground moving target (GMT) state estimator, a camera control algorithm, a UAV guidance algorithm, and an autopilot. The on-board multi-level autonomous visual tracking algorithm acquires the video frames from the on-board camera and calculates the GMT pixel position in the video frame. The on-board GMT state estimator receives the GMT pixel position from the multi-level autonomous visual tracking algorithm and estimates the current position and velocity of the GMT with respect to the UAV. The on-board non-linear UAV guidance law computes the UAV heading velocity rates and sends them to the autopilot to steer the UAV in the desired path. The on-board camera control law computes the control command and sends it to the camera's gimbal controller to keep the GMT in the camera's field of view. The UAV guidance law and camera control law have been integrated for continuous tracking of the GMT. The on-board autopilot is used for controlling the UAV trajectory. The simulation of the proposed system was tested with a flight simulator and the UAV's reaction to the GMT was observed. The simulated results prove that the proposed system tracks a GST or GMT effectively.
Read full abstract