In this article, a robust decentralized tracking control scheme for a large-scale unmanned aerial vehicle (UAV) formation team networked control system (NCS) is proposed to overcome a non-scalable or even infeasible design problem due to high computational complexity by the centralized control. At the outset, wind external disturbance, intrinsic fluctuation, coupling from other UAV subsystems, time-varying network-induced delay and packet dropout are taken into account in the design procedure of large-scale team formation UAV network system. Moreover, an event-triggered mechanism is embedded in NCS to reduce the number of transmitted control signals to save the network traffic especially for a large-scale team formation network of UAVs. To effectively reduce the above uncertainties, a robust \textH <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> decentralized tracking controller is proposed for the large-scale UAV team formation NCS which is constructed by virtual leader-follower tracking network of UAV subsystems. By the Takagi-Sugeno (T-S) fuzzy interpolation method, the \textH <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> robust virtual leader-follower decentralized tracking control design problem of the large-scale UAV team formation NCS is transformed to an independent Hamilton-Jacobin inequality (HJI)-constrained optimization problem for each UAV, which is effectively solved by a linear matrix inequality (LMI)-constrained optimization problem. Finally, a large-scale UAV team formation example of 25 UAVs is proposed to validate the effectiveness of the proposed robust decentralized tracking controller of large-scale UAV team formation NCS.
Read full abstract