A method of simulating downhole and crosshole seismic shear-wave tests in a model under controlled stress conditionsis described. The downhole and shear wave in horizontal plane (SH) crosshole shear waves are generated and received along the principal stress axes using piezoceramic bender elements. The K0in situ stress conditions, including loading and unloading stress paths, are simulated by the hydraulic gradient similitude method, which allows high stresses simulating field conditions to be obtained. The horizontal stress during the tests is directly measured by a lateral total-stress transducer. The test data are used to evaluate various published empirical equations that relate shear-wave velocity and soil stress state. It is found that although the various empirical equations can predict the in situ shear-wave velocity profile reasonably well, only the equation that relates the shear-wave velocity to the individual principal stresses in the directions of wave propagation and particle motion can predict the variation of the velocity ratio between the downhole and SH crosshole tests. It was also found that the stress ratio has some effects on the downhole (or shear wave in vertical plane (SV) crosshole) shear-wave velocity, but not on the SH crosshole shear-wave velocity. This indicates that it is only the stress ratio in the plane of wave propagation that is important to the shear-wave velocity. Comparison between the downhole and SH crosshole shows that structure anisotropy is in the order of 10%. In addjtion, K0 values are predicted from shear-wave measurement and compared with measured ones. The difficulties in obtaining K0 values from shear-wave measurement are also discussed. Key words: hydraulic gradient, model tests, downhole and crosshole shear-wave tests, sand.
Read full abstract