Water pipe leaks due to seismic damage are more difficult to detect than bursts, and such leaks, if not repaired in a timely manner, can eventually reduce supply pressure and generate both pollutant penetration risks and economic losses. Therefore, leaks must be promptly identified, and damaged pipes must be replaced or repaired. Leak-detection using equipment in the field is accurate; however, it is a considerably labor-intensive process that necessitates expensive equipment. Therefore, indirect leak detection methods applicable before fieldwork are necessary. In this study, a computer-based, multiple-leak-detection model is developed. The proposed technique uses observational data, such as the pressure and flow rate, in conjunction with an optimization method and hydraulic analysis simulations, to improve detection efficiency (DE) for multiple leaks in the field. A novel approach is proposed, i.e., use of a cascade and iteration search algorithms to effectively detect multiple leaks (with the unknown locations, quantities, and sizes encountered in real-world situations) due to large-scale disasters, such as earthquakes. This method is verified through application to small block-scale water distribution networks (WDNs), and the DE is analyzed. The proposed detection model can be used for efficient leak detection and the repair of WDNs following earthquakes.
Read full abstract