Avian bornaviruses (ABV) have been discovered in 2008 as the causative agent of proventricular dilatation disease (PDD) in psittacine birds. To date, six ABV genotypes have been described in psittacines. Furthermore, two additional but genetically different ABV genotypes were recognized in non-psittacine birds such as canary birds and wild waterfowl. This remarkable genetic diversity poses a considerable challenge to ABV diagnosis, since polymerase chain reaction (PCR) assays may fail to detect distantly related or as yet unknown genotypes. In this study we investigated the use of virus isolation in cell culture as a strategy for improving ABV diagnosis. We found that the quail fibroblast cell line CEC-32 allows very efficient isolation of ABV from psittacine birds. Isolation of ABV was successful not only from organ samples but also from cloacal and pharyngeal swabs and blood samples collected intra vitam from naturally infected parrots. Importantly, using this experimental approach we managed to isolate a new ABV genotype, termed ABV-7, from a salmon-crested cockatoo (Cacatua moluccensis). Phylogenetic analysis showed that ABV-7 is most closely related to the psittacine genotypes ABV-1, -2, -3, and -4 and clearly distinct from genotypes ABV-5 and -6. Our successful identification of ABV-7 emphasizes the necessity to consider the high genetic diversity when trying to diagnose ABV infections with high reliability and further shows that classical virus isolation may represent a useful diagnostic option, particularly for the detection of new ABV genotypes.