BackgroundCatheter laboratories are high-radiation exposure environments, especially during X-ray procedures like percutaneous transluminal coronary angioplasty and electrophysiological studies. Radiation exposure poses risks of stochastic (e.g., cancer) and deterministic (e.g., skin changes) effects. This study assessed radiation safety and health practices in a cardiac catheterization unit to optimize radiation safety. A cross-sectional study in Cairo University Hospital (March–September 2019) evaluated 700 patients and healthcare workers. Real-time radiation measurements, educational lectures, and radiation protection measures were implemented in three phases. Data on radiation exposure, procedures, and compliance were collected and analyzed.ResultsThe total procedure time and fluoroscopy time per cardiologist did not significantly differ between phases, but there was a statistically significant reduction in the mean total cumulative radiation doses between Phase I and Phase III for cardiologists (P = 0.013). Among nurses and technicians, there was no significant difference in radiation doses between the two phases. Significant correlations were found between operators' radiation doses, procedure time, and fluoroscopy time. Patients' radiation doses decreased significantly from Phase I to Phase III, with correlations between dose, procedure time, and gender. Compliance with radiation protection measures was suboptimal.ConclusionsCompliance with radiation safety standards in the cardiac catheterization unit at the Cairo University Hospital needs improvement. The study highlights the importance of adhering to radiation safety principles and optimizing protective measures to reduce radiation exposure for both patients and healthcare personnel. Despite low compliance, significant reductions in radiation doses were achieved with increased awareness and adherence to specific protection measures. Future efforts should focus on enhancing radiation safety protocols and organ-specific radiation impact assessments.