In this article, we present new results on specific cases of a general Young integral inequality established by Páles in 1990. Our initial focus is on a bivariate function, defined as the product of two univariate and separable functions. Based on this, some new results are established, including particular Young integral-type inequalities and some upper bounds on the corresponding absolute errors. The precise role of the functions involved in this context is investigated. Several applications are presented, including one in the field of probability theory. We also introduce and study reverse variants of our inequalities. Another important contribution is to link the setting of the general Young integral inequality established by Páles to a probabilistic framework called copula theory. We show that this theory provides a wide range of functions, often dependent on adjustable parameters, that can be effectively applied to this inequality. Some illustrative graphics are provided. Overall, this article broadens the scope of bivariate inequalities and can serve related purposes in analysis, probability and statistics, among others.
Read full abstract