Abstract
In a cell-free massive multiple-input multiple-output (MIMO) system without cells, it is assumed that there are smart jammers and disrupters (SJDs) that attempt to interfere with and eavesdrop on the downlink communications of legitimate users. A secure transmission scheme based on multiple intelligent reflecting surfaces (IRSs) and artificial noise (AN) is proposed. First, an access point (AP) selection strategy based on user location information is designed, which aims to determine the set of APs serving users. Then, a joint optimization framework based on the block coordinate descent (BCD) algorithm is constructed, and a non-convex optimization solution based on the univariate function optimization and semi-definite relaxation (SDR) is proposed with the aim of maximising the minimum achievable secrecy rate for users. By solving the univariate function maximisation problem, the multi-variable coupled non-convex problem is transformed into a solvable convex problem, obtaining the optimal AP beamforming, AN matrix and IRS phase shift matrix. Specifically, in a single-user scenario, the scheme of multiple intelligent reflecting surfaces combined with artificial noise can improve the user's achievable secrecy rate by about 11% compared to the existing method (single intelligent reflective surface combined with artificial noise) and about 2% compared to the scheme assisted by multiple intelligent reflecting surfaces without artificial noise assistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.