Abstract. Satellite-derived soil moisture provides more spatially and temporally extensive data than in situ observations. However, satellites can only measure water in the top few centimeters of the soil. Root zone soil moisture is more important, particularly in vegetated regions. Therefore estimates of root zone soil moisture must be inferred from near-surface soil moisture retrievals. The accuracy of this inference is contingent on the relationship between soil moisture in the near-surface and the soil moisture at greater depths. This study uses cross correlation analysis to quantify the association between near-surface and root zone soil moisture using in situ data from the United States Great Plains. Our analysis demonstrates that there is generally a strong relationship between near-surface (5–10 cm) and root zone (25–60 cm) soil moisture. An exponential decay filter is used to estimate root zone soil moisture using near-surface soil moisture derived from the Soil Moisture and Ocean Salinity (SMOS) satellite. Root zone soil moisture derived from SMOS surface retrievals is compared to in situ soil moisture observations in the United States Great Plains. The SMOS-based root zone soil moisture had a mean R2 of 0.57 and a mean Nash–Sutcliffe score of 0.61 based on 33 stations in Oklahoma. In Nebraska, the SMOS-based root zone soil moisture had a mean R2 of 0.24 and a mean Nash–Sutcliffe score of 0.22 based on 22 stations. Although the performance of the exponential filter method varies over space and time, we conclude that it is a useful approach for estimating root zone soil moisture from SMOS surface retrievals.
Read full abstract