Let consider the Pauli group $\mathcal{P}_q=<X,Z>$ with unitary quantum generators $X$ (shift) and $Z$ (clock) acting on the vectors of the $q$-dimensional Hilbert space via $X|s> =|s+1>$ and $Z|s> =\omega^s |s>$, with $\omega=\exp(2i\pi/q)$. It has been found that the number of maximal mutually commuting sets within $\mathcal{P}_q$ is controlled by the Dedekind psi function $\psi(q)=q \prod_{p|q}(1+\frac{1}{p})$ (with $p$ a prime) \cite{Planat2011} and that there exists a specific inequality $\frac{\psi (q)}{q}>e^{\gamma}\log \log q$, involving the Euler constant $\gamma \sim 0.577$, that is only satisfied at specific low dimensions $q \in \mathcal {A}=\{2,3,4,5,6,8,10,12,18,30\}$. The set $\mathcal{A}$ is closely related to the set $\mathcal{A} \cup \{1,24\}$ of integers that are totally Goldbach, i.e. that consist of all primes $p2$) is equivalent to Riemann hypothesis. Introducing the Hardy-Littlewood function $R(q)=2 C_2 \prod_{p|n}\frac{p-1}{p-2}$ (with $C_2 \sim 0.660$ the twin prime constant), that is used for estimating the number $g(q) \sim R(q) \frac{q}{\ln^2 q}$ of Goldbach pairs, one shows that the new inequality $\frac{R(N_r)}{\log \log N_r} \gtrapprox e^{\gamma}$ is also equivalent to Riemann hypothesis. In this paper, these number theoretical properties are discusssed in the context of the qudit commutation structure.