Hydrogen sulfide (H2S) donors are emerging as promising candidates for neuroprotective agents. However, H2S-dependent neuroprotective mechanisms are not yet fully understood. We have demonstrated that an H2S donor (sodium sulfide, Na2S) reduces the expression of inducible NO synthase (iNOS) and amyloid-beta precursor protein (APP) in damaged neural tissue at 24 h and 7 days following traumatic brain injury (TBI). The application of aminooxyacetic acid (AOAA), an inhibitor of cystathionine β-synthase (CBS), produced the opposite effect. Seven days after TBI, iNOS expression was observed not only in the cytoplasm but also in some neuronal nuclei, while APP was exclusively localized in the cytoplasm and axons of damaged neurons. It was also shown that iNOS and APP were present in the cytoplasm of mechanoreceptor neurons (MRNs) in the crayfish, in axons, as well as in certain glial cells 8 h after axotomy. Na2S and AOAA had opposing effects on axotomized MRNs and ganglia in the ventral nerve cord (VNC). Multiple sequence alignments revealed a high degree of identity among iNOS and APP amino acid residues in various vertebrate and invertebrate species. In the final stage of this study, biomodeling identified unique binding sites for H2S, hydrosulfide anion (HS-), and thiosulfate (S2O32-) with iNOS and APP.
Read full abstract