Single-nucleotide polymorphism (SNP) analysis is a powerful tool for population genetics, pedigree reconstruction and phenotypic trait mapping. However, the untapped potential of SNP markers to discriminate the sex of individuals in species with reduced sexual dimorphism or of individuals during immature stages remains a largely unexplored avenue. Here, we developed a novel protocol for molecular sexing of birds based on the detection of unique Z- and W-linked SNP markers. Our method is based on the identification of two unique loci, one in each sexual chromosome. Individuals are considered males when they show no calls for the W-linked SNP and are heterozygous or homozygous for the Z-linked SNP, while females exhibit both Z- and W-linked SNP calls. We validated the method in the Jackdaw (Corvus monedula). The reduced sexual dimorphism in this species makes it difficult to identify the sex of individuals in the wild. We assessed the reliability of the method using 36 individuals of known sex and found that their sex was correctly assigned in 100% of cases. The sex-linked markers also proved to be widely applicable for discriminating males and females from a sample of 927 genotyped individuals at different maturity stages, with an accuracy of 99.5%. Since SNP markers are increasingly used in quantitative genetic analyses of wild populations, the approach we propose has great potential to be integrated into broader genetic research programmes without the need for additional sexing techniques.
Read full abstract