Carbohydrates are ubiquitous in nature, playing vital roles in all organisms ranging from metabolism to intercellular signaling. Polysaccharides, repeating units of small molecule carbohydrates, are hydrophilic, densely functionalized, stereoregular, and rigid macromolecules, and these characteristics are simultaneously advantageous in biomedical applications while presenting major hurdles for synthetic methodology and development of structure property relationships. While naturally obtained polysaccharides are widely utilized in the biochemical and medical literature, their poor physicochemical definition and the potential for contaminated samples hinders the clinical translation of this work. To address the need for new methods to synthesize carbohydrate polymers, we reported a novel class of biomaterials (Poly-Amido-Saccharides; PAS) in 2012. PASs share many properties with natural polysaccharides, such as hydrophilicity, dense hydroxyl functionality, stereoregularity, and a rigid backbone. PASs are connected by an α-1,2-amide linkage, instead of an ether linkage, that confers resistance to enzymatic and hydrolytic degradation and leads to a unique helical conformation. Importantly, our synthetic methodology affords control over molecular weight distribution resulting in pure, well-defined polymers. This Account provides an overview of the development of PAS, from the factors that initially motivated our research to current efforts to translate functional PAS to biomedical applications. We detail the synthesis of glucose- and galactose-based PAS and their biophysical properties including conformation analysis, lectin interactions, cell internalization, and water solubility. Additionally, we describe postpolymerization modification strategies to afford PASs that act as protein stabilizers. We also highlight our recent efforts toward a mechanistic understanding of monomer synthesis via [2 + 2] cycloaddition reactions in order to develop novel monomers with different stereochemistry and amine or alkyl functionality, thereby accessing functional carbohydrate polymers. Throughout our work, we apply computational and theoretical analysis to explain how properties at the monomer level (e.g., stereochemistry, functionality) significantly impact polymer properties, helical conformation, and bioactivities. Collectively, the results from the theoretical, synthetic, and applied aspects of this research advance us toward our goal of utilizing PASs in key biomedical applications as alternatives to natural polysaccharides. The importance of carbohydrates in nature and the versatility of their functions continue to inspire our investigation of new monomers, polymers, and copolymers, leveraging the advantageous properties of PAS to develop potential therapies.
Read full abstract