Although wearable devices for continuous monitoring of vital signs have undergone significant advancements, their need for frequent recharging precludes continuous operation, potentially leading to adverse outcomes being overlooked. Additionally, the scattered locations of the sensors hamper wearability. Herein, we present a compact vital-sensing band with uninterrupted power supply designed for continuous monitoring of core body temperature (CBT) and pulse rate. The band─which comprises two sensors, a power source (i.e., a flexible thermoelectric generator (TEG) and a battery), and a flexible circuit─is worn on the forearm. The CBT is calculated by measuring the skin temperature and heat flux, while a triboelectric nanogenerator-based self-powered pressure sensor is utilized for pulse rate monitoring. The TEG is a flexible unit that converts body heat into electricity, accumulating a total energy of 314 mJ (100%). Out of this total energy, only 43.2 mJ (7.2%) is utilized for CBT measurements, while the remaining 270.80 mJ (92.8%) is stored in the battery. This enables reliable and continuous operation of the vital-sensing band, highlighting its potential for use in healthcare applications.
Read full abstract