Understanding quantum tunneling and above-barrier reflection effects on unimolecular and bimolecular reaction rate constants remains challenging to this very day. In many applications, especially when considering moderate-to-high temperatures, the "standard" procedure is to use the parabolic barrier approximation. Recent work has shown though that this may be insufficient, and one cannot ignore anharmonicity. In this work, we study the analytic theory, including anharmonicity obtained when expanding the thermal rate up to order ℏ4. Such theories need high-order derivatives of the potential at the barrier top. We show that such derivatives are computed straightforwardly for six different reactions. We suggest a straightforward methodology for assessing whether the parabolic barrier approximation is valid and show that when the reaction asymmetry is large, this may lead to significant quantum above-barrier reflection and transmission coefficients, which are less than unity.