Previous article Next article Quasilinear Uniformly Elliptic Partial Differential Equations and Difference EquationsG. I. McAllisterG. I. McAllisterhttps://doi.org/10.1137/0703002PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] Lipman Bers, On mildly nonlinear partial difference equations of elliptic type, J. Research Nat. Bur. Standards, 51 (1953), 229–236 MR0064291 0053.40202 CrossrefISIGoogle Scholar[2] J. H. Bramble and , B. E. Hubbard, On the formulation of finite difference analogues of the Dirichlet problem for Poisson's equation, Numer. Math., 4 (1962), 313–327 10.1007/BF01386325 MR0149672 0135.18102 CrossrefGoogle Scholar[3] Lothar Collatz, The numerical treatment of differential equations. 3d ed, Translated from a supplemented version of the 2d German edition by P. G. Williams. Die Grundlehren der mathematischen Wissenschaften, Bd. 60, Springer-Verlag, Berlin, 1960xv+568 pp. (1 plate) MR0109436 0086.32601 CrossrefGoogle Scholar[4] R. Courant and , D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations, (Vol. II by R. Courant.), Interscience Publishers (a division of John Wiley & Sons), New York-Lon don, 1962xxii+830 MR0140802 0099.29504 Google Scholar[5] George E. Forsythe and , Wolfgang R. Wasow, Finite-difference methods for partial differential equations, Applied Mathematics Series, John Wiley & Sons Inc., New York, 1960x+444 MR0130124 0099.11103 Google Scholar[6] G. T. McAllister, Some nonlinear elliptic partial differential equations and difference equations, J. Soc. Indust. Appl. Math., 12 (1964), 772–777 10.1137/0112063 MR0179958 0137.08002 LinkISIGoogle Scholar[7] Tibor Radó, On the Problem of Plateau, Chelsea Publishing Co., New York, N. Y., 1951iv+109 MR0040601 Google Scholar[8] J. Schauder, Sur les équations aux dérivées partielles du type elliptique, C. R. Acad. Sci. Paris, 195 (1932), 1365–1367 0004.39502 Google Scholar Previous article Next article FiguresRelatedReferencesCited byDetails Monotonically convergent iterative methods for nonlinear systems of equationsNumerische Mathematik, Vol. 32, No. 1 Cross Ref On the Origins and Numerical Solution of Some Sparse Nonlinear Systems Cross Ref Velocity potential computation by finite differences for compressible flow in ductsInternational Journal for Numerical Methods in Engineering, Vol. 9, No. 3 Cross Ref Morrey space methods in the theory of elliptic difference equations23 August 2006 Cross Ref Monotonieeigenschaften Von Diskretisierungen Des Dirichletproblems Quasilinearer Elliptischer Differentialgleichungen23 August 2006 Cross Ref On equations describing steady-state carrier distributions in a semiconductor deviceCommunications on Pure and Applied Mathematics, Vol. 25, No. 6 Cross Ref Difference analogues of quasi-linear elliptic Dirichlet problems with mixed derivatives1 January 1971 | Mathematics of Computation, Vol. 25, No. 114 Cross Ref Discrete maximum principle for finite-difference operatorsAequationes Mathematicae, Vol. 4, No. 3 Cross Ref BIBLIOGRAPHY Cross Ref Existenz und Konvergenz von L�sungen nichtlinearer elliptischer Differenzengleichungen unter DirichletrandbedingungenMathematische Zeitschrift, Vol. 109, No. 4 Cross Ref An application of a priori bounds on difference quotients to a constructive solution of mildly quasilinear Dirichlet problemsJournal of Mathematical Analysis and Applications, Vol. 24, No. 3 Cross Ref A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equationsNumerische Mathematik, Vol. 11, No. 1 Cross Ref A functional analytic approach to the numerical solution of nonlinear elliptic equationsComputing, Vol. 2, No. 1 Cross Ref Volume 3, Issue 1| 1966SIAM Journal on Numerical Analysis History Submitted:23 March 1965Published online:14 July 2006 InformationCopyright © 1966 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0703002Article page range:pp. 13-33ISSN (print):0036-1429ISSN (online):1095-7170Publisher:Society for Industrial and Applied Mathematics