In this paper, we address the general case of a light clock in uniform translational motion parallel to itself and perpendicular to its uniform velocity v, as well as the case of the light clock in relativistic hyperbolic motion. Neither case has been previously addressed in the specialized literature, which typically restricts itself to canonical orientations where the light clock moves parallel to either the vertical or horizontal axis with uniform velocity, without acceleration. Therefore, it becomes interesting to study the more general case where the clock has an arbitrary orientation and/or is accelerated. Our paper is divided into two main sections. The first section deals with the light clock moving with constant velocity, oriented at an arbitrary angle with respect to the x-axis. We prove that the moving clock exhibits a standard time dilation, identical to that of a light clock moving in a canonical orientation. The second section deals with the light clock moving with constant acceleration, i.e., in hyperbolic motion. For the light clock in hyperbolic motion, we derive the period as measured from the perspective of an inertial frame and draw parallels with the case of uniform motion, outlining a term that is similar (but not identical) to the γ factor of uniform motion. We also point out that this factor depends not only on acceleration but also on the height of the light clock. This dependency on the dimension of the light clock distinguishes the accelerated case from the case of uniform motion. The first three sections deal with the theoretical aspects of light (optical) clocks, while the fourth section addresses the experimental implementations of optical clocks.
Read full abstract