Abstract

The energy absorption and energy extinction cross sections of an object in uniform translational motion in free space are Lorentz invariant, but the total energy scattering cross section is not. Indeed, the forward-scattering theorem holds true for co-moving observers but not for other inertial observers. If a pulsed plane wave with finite energy density is incident upon an object, the energies scattered, absorbed, and removed from the incident signal by the object are finite. The difference between the energy extinction cross section and the sum of the total energy scattering and energy absorption cross sections for a non-co-moving inertial observer can be either negative or positive, depending on the object's velocity, shape, size, and composition. Calculations for a uniformly translating, solid, homogeneous sphere show that all three cross sections go to zero as the sphere recedes directly from the source of the incident signal at speeds approaching c, whether the material is a plasmonic metal (e.g., silver) or simply a dissipative dielectric material (e.g., silicon carbide).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.