In vivo muscle architectural parameters can be calculated from the fiber tracts using magnetic resonance (MR) tractography. However, the reconstructed tracts may be unevenly distributed within the muscle volume and there lacks commonly used metric to quantitatively evaluate the validity of the tracts. Our objective is to measure forearm muscle architecture by uniformly sampling fiber tracts from the candidate streamlines in MR tractography and validate the reconstructed fiber tracts qualitatively and quantitatively. We proposed farthest streamline sampling (FSS) to uniformly sample fiber tracts from the candidate streamlines. The method was evaluated on the MR data acquired from 12 healthy subjects for 17 forearm muscles and was compared with two conventional methods through uniform coverage performance. Anatomical correctness was verified by: 1. visually assessing fiber orientation, 2. checking whether architectural parameters were within physiological ranges and 3. classifying architectural types. The proposed FSS yielded optimal uniform coverage performance among the three methods (P<0.05). FSS reduced the sampling of long tracts (10% fiber length reduction, P<0.05), and the estimated architectural parameters were within the physiological ranges (P<0.05). The tractography visually matched cadaveric specimens. The architectural types of 16 muscles were correctly classified except for the palmaris longus, which exhibited a linear arrangement of fiber endpoints (R2 = 0.95±0.02, P<0.001). The proposed FSS method reconstructed uniformly distributed fiber tracts and the anatomical correctness of the reconstructed tracts was verified. The novel methods allow for accurate in vivo muscle architectural measurement, which was demonstrated through the characterization of architectural properties in human forearm muscles.
Read full abstract