ABSTRACTWe investigate uniform versions of (metric) regularity and strong (metric) regularity on compact subsets of Banach spaces, in particular, along continuous paths. These two properties turn out to play a key role in analyzing path-following schemes for tracking a solution trajectory of a parametric generalized equation or, more generally, of a differential generalized equation (DGE). The latter model allows us to describe in a unified way several problems in control and optimization such as differential variational inequalities and control systems with state constraints. We study two inexact path-following methods for DGEs having the order of the grid error and , respectively. We provide numerical experiments, comparing the schemes derived, for simple problems arising in physics. Finally, we study metric regularity of mappings associated with a particular case of the DGE arising in control theory. We establish the relationship between the pointwise version of this property and its counterpart in function spaces.
Read full abstract