In this research work, we apply a numerical scheme based on the first-order time integration approach combined with the modifications of the meshless approximation for solving the conservative Allen–Cahn–Navier–Stokes equations. More precisely, we first utilize a first-order time discretization for the Navier–Stokes equations and the time-splitting technique of order one for the dynamics of the phase-field variable. Besides, we use the local interpolation based on the Matérn radial function for spatial discretization. We should solve a Poisson equation with the proper boundary conditions to have the divergence-free property during the numerical algorithm. Accordingly, the applied numerical procedure could not give a stable and accurate solution. Instead, we solve a regularization system in a discrete form. To prevent the instability of the numerical solution concerning the convection term, a biharmonic term with a small coefficient based on the high-order hyperviscosity formulation has been added, which has been approximated by a scalable interpolation based on the combination of polyharmonic spline with polynomials (known as the PHS+poly). The obtained full-discrete problem is solved using the biconjugate gradient stabilized method considering a proper preconditioner. We investigate the potency of the numerical scheme by presenting some simulations via uniform, hexagonal, and quasi-uniform nodes on rectangular and irregular domains. Besides, we have compared the proposed meshless method with the standard finite element method due to the used CPU time.