Abstract
In this research work, we apply a numerical scheme based on the first-order time integration approach combined with the modifications of the meshless approximation for solving the conservative Allen–Cahn–Navier–Stokes equations. More precisely, we first utilize a first-order time discretization for the Navier–Stokes equations and the time-splitting technique of order one for the dynamics of the phase-field variable. Besides, we use the local interpolation based on the Matérn radial function for spatial discretization. We should solve a Poisson equation with the proper boundary conditions to have the divergence-free property during the numerical algorithm. Accordingly, the applied numerical procedure could not give a stable and accurate solution. Instead, we solve a regularization system in a discrete form. To prevent the instability of the numerical solution concerning the convection term, a biharmonic term with a small coefficient based on the high-order hyperviscosity formulation has been added, which has been approximated by a scalable interpolation based on the combination of polyharmonic spline with polynomials (known as the PHS+poly). The obtained full-discrete problem is solved using the biconjugate gradient stabilized method considering a proper preconditioner. We investigate the potency of the numerical scheme by presenting some simulations via uniform, hexagonal, and quasi-uniform nodes on rectangular and irregular domains. Besides, we have compared the proposed meshless method with the standard finite element method due to the used CPU time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have